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ABSTRA CT

We study results on a class of completely integrable systems, for

instance with Hamiltonian

H ( x ,y )  = 
~ 

y~ + ~~ (x . — x ) 2 
+ a ~

i—l 1<] i—i

using quotient manifolds induced by symplectic group actions , which enables

us to integrate the systems and understand their complete integrability .

In addition , we give a natural interpretation for the scatter ing maps

associated with these systems.
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SIGNIFI CANCE AND EXPLANATION

We study mechanical problems with high degrees of symmetry, or

equivalen tly many constants of motion . An example of such a system would

be n decoupled oscilla tors, since such a system would have the associated

n energies of the oscillators as constants of the motion.

In mechanics, the process of studying systems by ignoring symmetries,

or constants of the motion , for instance studying a system in its center

of mass coordi nates , is well—known . Using a modern abstraction of this old

and valuable idea , we study certain systems of interest in mathematical

physics, which have many symmetries. We are able to completely solve

these systems using the above idea .
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COMPLETELY INTEGRABLE S Y S T E M S  AND SYMPLECTIC ACTJ (~~S

M. Adler

(1) Introductior — I n  this short note we explain the results of “Some Finite Dimensiona l

Integrable Systems and Their Sc:attering Behavior ’s , (11. by th~ author , arid of [‘~,(,7j,

in terms of the abstract machinery set up in the ra~ er of D. Kazhdan , B. Kostant, and

S. Sternberg, entitled “Hamiltonian Group Actions an d Dynamical Systems of Calogero

Type ” , ( 2 j ,  which explains systems first discovered by F. Caloqero , C. Mar chioro , U ] ,

and first discussed by J. Moser [4].

Briefly, the systems to be discussed have the property that their equations of

motion can be expressed as matrix differential equatic~ s which can be easily integrit .-d ,

and moreover , the integration process is seen to occur naturally in a space of much

higher dimensionality than the systems in question. The systems to be studied are thus

interpreted as quotient systems, of the much larger systems, where the quotienting out

process is performed by a syinpiectic action of the unitary group .

The process of quo tien t ing  ou t in mechanics , Such as using center of mass coordinates ,

i.e. ignoring the position of the center of mass, is indeed a common practic - We

point out tha’ usua l ly  quotien ting out , or ignoring certain data , is a way of ignoring

the symmetries, or integrals of the system , so as to arrive at some basic equations

to study . Here the quotienting out does not really i nvolve the integrals , but enabl es

us to pass to the ultimate system to be studied . The integrals are in fact generated

in a much more trivial way, through the use of natural L~ anq ian submanifolds and

simple canonical  maps , which of course makes use of the quotient structure. In addition,

the so—called scattering maps of these systems have a natural interpretation in this

context.

In the first section we merely summarize the abstract machinery of [21 of use in

the discussion , referr ing the reader to [21 and the paper of 3. Marsden and A. Weinstein

1 81, for a full er discussion. We then discuss the results of (11, whi ch entails

r e f e r r i n g  to I I )  f r equ e n t l y .

Sponsored by the United States Army under Contract No. DAAG29—75—C-0024 and the N a t i o n a .~
Science Foundation under Grant No. MCS75-17385 AOl .
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(2) The Symplectic Structures - We susunarize and briefly discuss the necessary abstract

machinery needed to discuss 11). Let (M ,~~,G) be a triple, with N an (exact)

symplectic manifold with nondegenerate closed two—form u — di , and C a Lie group,

with elements g, which acts on M with a symplectic action. If £ is the Lie
C

algebra of C, with elements denoted by g, then the action of G associates with

each g the Hamiltonian vector—field ~~ , and the Hamiltonian function f.( ) —r(g)( 1,

yields a Lie homomorphism, i.e.,

(2.1) {f. ,f . } — f . . , U , the bracket in £ ,g1 g2 1g1,g21

wt~ere 
{ , } is just the usual Poisson bracket, i.e. if

(2.2) X I w df , then X (f ) w(X ,X ) s {f ,ff f 1 f f 1 2

We define the moment map of Souriac,

(2.3) 4’ N L*, by •(m) (g) — f.(m)

with C. the dual of C . The group G acts on itself by conjugation , hence on £ by

* a
the linearization of conjugation, Adj, and on £ by (Adj) , and its easy to see

that (2.1) is just the infinitesmal , and hence equivalent version of the relation of

equ ivar iance ,

—1 *(2.4) 4’ a g (Adj g ) 4’

a a —1We then form the orbit of a e £ under (Adj) , 8 , and assume V 4’ (8 ) is

a manifold . Then in fact it is a coisotropic manifold, i.e. (TV )1 C (TV), fo: all

x e V , with I denoting perpendicularity with respect to w, and we can thus form

S = V/(leaves of the foilation induced by (TV)1), taking S to be connected and

assuming it to be a manifold . Then as a direct consequence of (2.4), it’s not hard to

see (although it ’s not shown in [2,8)), that S is a coverinq space of 0, as fol1ows~

(2.5) S m e x 8 , = 4’
a a ~ C

a

where /G means we identify elements x,y S N if they lie on the same G orbit,

—2—



lsotepy qr oup of i, i .e. the connected subqroup of C wk ich fixes a

b) it s ~htioxi on M. Incidental ly, this shows S is a manifo ld ~r .  isely if ~~
‘ is on, .

By t i . ’ ~o i - ~~t r ~~~v i V , and the transitivity of . on the t i l i s , ~ iudu~~~s a

s yin~ I. struct ii r~ on ‘3’ , , Li . we shall tacitly assume . is nond n~ rat ci ,

is a homomorphism . Th~ structure (~ ,c )  ,C shall be air arena of

i t  iv it y .

We note that by (2.1), (2.2). functions in M which are C invariant, induce

Haznhl tc:iian flows on M with p o in t wi s e  fix the imaqe of M under ~, and hence they

iridu ~ c Ilainiltonian flows on ~~
‘ . In addition , such functions , if  they are in involution
a

with r~’s(~~~t to { , } on M , are via the homomorphism w • a ,  automatically in

involut ion in ~~~~, thought of , by th ei r  C i n v a r i a nce , as func tions on 0’ . This
1 a

end s our discussion of quotient structures.

In }r. i iration we discuss the M ’s which shall come ut. in the  examples.

Let F he the linear manifold of n n matrices with complex coefficients ,

a . 
*

and T F I be the cotangent  bu n d l e  of F , where we shall identify T F r ‘ F

via the bili near form (IC.?) trXY. Then the complex symplectic 2-form a, naturally

aasociated with T F is

w = I ~ X . A dY .. = (dX,dY >
1.3 31

or alternately, we wri te h amilton ’s equations , wi th Hamiltonj in H = h I ( X , Y) ,  as

(2.E’) X = Hy~ V =

where [H I . . = — -
~~

—- , etc . If we restr ic t  a to
IC ij  ~x . ,

31.

(2.7) M
1 

= T*C = {( x , Y ) Ix = X , Y = Y }

wh , r ,  * denotes ta~~inq the Hermitian adjoint, i.e. £ is just the self-adjoint

matric e s. (which we shall identif y with the Lie algebra if the unitary group

t J ( n . C ) ) , a y ie l d s  a r e a l  symplect ic  s t r u c t u r e ,  w i t h  H a m i l t o n ’ s ‘quat li tis

remai ning is given in (2 i t , Where it is understood tha t II is real .

rt is k i t  • r • t  i i i  I mat . ‘‘ 4 vi a

f x  I x( 2 . 1 )  v ‘
~ t x v  —

- -  -~~~~~~
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then as one computes

[ H~ Hz 
+ YH , . H~ — H X

Z
1

X H ,~. Z
2
.. (XY) = H

~
Y _ X H

~~~
,)

and so we may write Hamilton ’s equations in (Z
1

,Z 2
) coordi~~.ito is

(2.9) — H
7
Z
1
, Z

2 IHz~~
Z2

] - Z
1
H7

Let us now restrict t to TU(n) , i.e. we i ’ entify

(2.10) N2 — T U ( n ,C) 
~~ 
{(z

11 z2)Iz 1z~ = I , = z2
) ,

and restrict i ~+ = T . Note i is invertible , and of course we may j t i ’
I T 1 (M

2
)

as well identify i ( M
2
) with TU (n). In that case, since by the pairing ( , I , x , Y

are the usual dual coordination of T U(n) , (2.9) restricted to M
2 

precisely ~ ields

Hamilton ’s equations for the natural symplectic structure of T U (rI); that is , u~

to the factor i which must be put in due to our identification of the Lie algebra of

(3(n) with seif—adjoint matrices, or equivalently we may think of time as beinu -Iir l~:

imaginary in (2.9). We omit the necessary , but easy verification that (2.0) restricted

to N2 automatically preserves 14
2. which is sufficient to ilsurc the restricted .

is symplectic .

— 4 —



IH )  L1ui t I~~~ia i t  M .t  i~~~I i  10 i t O  i t ’.) ‘~~ .01 •‘i~~~ S~ ‘5 l i i l ~~ ‘ I , , di ., . ’ i . i  iii

ion 2 .  S. ’ ‘ -~~, i l l l i  ‘~. , ,.,  . !~~~~~ ,‘ t i n  1 I ’  CM
1 

, i t X  . 1 i t  . 1 ‘. ‘ o I l , . ,

Sin, , — r £ . 1. . £ . 1 i i .  I i i i t i i  - “  11 (ii) . V (TI ’ i I s  c , , t  . 1  111 ’ ’ .

A l l ,  i . e . l
~~ 

‘ ‘ t ’ ’i-I.it i in a h a b  , t t i i , I  1 ’ ’  ,‘xt’’isL t ’  .i  a n t ) ., oun u i .  ~n

~~~ ( i t  1’ t i (ti.c) C

II : ( X V )  \ ‘ i ’ I i )

‘I ‘f  s~~ i V t V ,  l i t ’ . ’ .i ‘ ‘ i s  I o n i s  

C “ ( ( t 1 , X I , ( U , y 1 (  F Th
1 ,,,~

,

‘s’ii, ’,’ , by (2.3), and tb. ,iis’v , ’ ,

I 1X ,~ t i l l  = I . ~~~ ) ( I U , x 1 , Y~ - t j x ,Y J , t i )

. i i i t se l ’y I I t o ’ i f  t i t  t a n  ‘f C w i t h  C t i c ’ ’  ‘ih , I ,

I i . I )  • -l ( a )  = { (X,)’t I X , ?]  — I

and wi sh.i  I I - i i  , a d  t i i i  a l l  ~‘i ‘k i such t~~ , l

I i i  
~~~ 

= i ( I  — . 1. ‘‘ . . i i i ’.’ t’ v ii

v , k~ v (1 , 1 ,1 ()
T 

N~’I . ’ t h a t  I t o -  I i L  i t g t ’u~ = 1 ~~~~~~

c it  a. s t i . i  I I  .1 . ‘ i i n ’ ’ I t ,  i ‘du d II L ’. T T  C III

— v ) ,  w i t h  I i , ’ , i h i , ’ i .  I = (VIR(v) il l

In £ 2) i t  i S ’ t , w n  by .1 ‘. i n i  I ’  h u l l  , i I ’ i i ’ ( ’ l , l  II Oi l ’ , I I I  I ’ I . i t  ~ I X ,Vl = , i , a.’

i i ,  . i , a . i ’i f i n d  a ‘ i n i p i . ’ U ‘ ‘ a , h i h ~~

I I IX U t i  i t  C x  , x S ) x , - x , ,i ll
( 3 . i l  / 1 2 V i

Uuvt i ’ i .k - 
L i  

i (l — 
1k ~~~~ 

- ) l

anti t i , ’ ~~~ ’. ’ ‘ = I 
— 

I i i  . ‘~~ ~5 .‘~ •‘ , ‘ , ‘ t i v .  I y ‘ci t , l i i i .’, - - t t’v tx , S 5 1 , 1 I -
1 1 1 .‘ ii ‘1 • n

~x , y )  , a i d  nt’re,.’ ,’r it is ( ‘at’ in U .’) . L v  .i l~~, ’,i l it  c l ot  , i - i t

0

( 1 .4) — 
‘
~ d x  ~~~~~~~ 1 ., ’ . t i l

1 ‘1

form a a t  of c an ori i ,’al ,‘. ‘ . ‘T . i m u  ‘ i i . }I ’ ’n ’, ’ i n  ‘ : ‘ m s  i~~O 5 ’ ’ , ~ , and t h u s  S t. .  a

‘1, 1 i t .  ‘Id ( S i ’ , ’ V . 1  ion . 1  , i l — i t  . iS ti n t , ’, , ’ ii. ’? it . . and h e l l .  .‘ C~~Tfl(’ l e t I, ’ .



We now wish to f i n d  functions on ‘ - ‘ . and by the discuss ion  in Section 2, f u n c tions

of the form

(3.5) H — H ( X ,Y) — tr  P ( X , Y )

wi th P(’,’) a noncommutinq polynomial in its arguments will certainly do. If We take

( 3 . 5 )  as a H a m i l t o n ian  f u n ct i o n  on N
1
, then ( 2 . 6 )  y ie lds  f o r  H a mi l t o n ’ s equa t ions ,

(3.u. ) X — h
1

(X , Y ) ,  V = h
2

(X , Y)

wi th h ( ’ ,~~), i = 1,2, polynomials in their arguments , uniquely determined by P(’,’).

As mentioned , H = tr P (X.Y) automatically can be thought of as a function on 0’ ,
a

in t a c t  v i a

(3.7) h (X, Y t  = Tr P ( x , y ) ,  (see ( 3 . 1 1) )

and we wish to determine the analog of ( 3 . t )  for  the system on 8 ’  w i t h  H a m i l to n i a n

(3.7), or to put it another way, we shall determine how (3.6) transforms in

So assume we are given initial data (X(0),Y (0)) for  Hami l ton ’s equ at ions

with Hamiltonian h(x ,y) in 0’ , which corresponds to (x(OLiy(0)) which we may

identify, and thus set equal to, (X(0),Y(0)) in M
1
. Under the Hamiltonian h(x , y ) ,

(x(0),y(0)) “ (x(t),y (t)), and correspondingly under the Hamiltonian H(X ,Y),

(x(0),Y ( 0 ) ) ‘ (X (t) , Y (t)). By the previous remarks, we must have

(3.8) X(t) Ux(t)U
1
, Y ( t) — U y ( t) U ’, U = (3(t) ,

with (3(t) 5 C
0
, (see (3.2)), uniquely defined , as the H ( X ,Y) flow in the big

manifold M
1 

descends to the h(x,y) flow in the little manifold 8~ through quotient-

ing Out via C
0
. Define 8(t) s £~~, (See (3.2)), by 13 = -UB, and so by (3.6), (3.8)

X = U SXU~~ = h
1
(X.Y) = Uh

1
(x , y ) U 1

where Sx = x - IB ,x), and so we have

(3.9) h
1
(x,y), 

~
y = h~~(x,y)

as a consequence of Hamilton ’s equations on 0’ , x — -
~
- h(x ,y), 

~
‘ = - —

~
- h (x,y) , and

ix

thus we see how (3.6) is transformed in F ’ . Note that from the definition of ~~, (3.9),

and B(v) = 0, (see ( 3 . 2 ) ) .  we can immedia te ly  compute the unexpected func t iona l  dependence,

= B ( x ( t ~~, y ( t ) ) ,  s ince  x is a d iagonal  m a t r i x .

-6-
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W~ ~~~ -i.i liz e I c  thi . case H — H f 
= tr  f(Yl- . for which we , ‘oriI( ,u t ,’ , (see ( 3 . 6 ) ) ,

h
1

( X , ?) f l Y ) ,  h — Cl , and thus conclud e from (3.6), ( i ,9 )

(3.10) X — f ’ ( Y ) , V 0 ,

(3.11) = f’(y) , ~y = 0 .

Since ( 3 . l 0 (  is i m med i a t ely  solvable , we have in fac t  solved ( 3 . 1 1)  by the use  u f  ( 3 . 8 ) .

We .Sls, ’ note tha t  s ince c l e a r l y  the H
f ’ S a re  in  i n vo l u t ion on M

1
, being functions

~‘r l y ‘f 1 , t h a t  by t he  homomorphism ‘~~ a .  the h f ’s . h f 
= tr  f ( y ) .  a re  in

in v o l t i t  i ’ri Ofl ‘ C ’  , and in f a c t  are genera ted  by n indi-
~ 

u ’n d , , u i t  f u n c t i o n s , ~~~~ = ti l y )

I Li2 ...., n. Thus h t r ~~} 
~ 2 ) gives r ise  to a complet e ly  i n te gr a b l e  H am i l t o n i an

sy st . ’r i

— 7 —

- -



r _ _ _ _ _ _

t 4 )  — i t  l i i i  ii’) M.ij ’ - . — Upo n in n  ( ‘‘i’ t i i i , on. ’ .’  Ls, ’rv es  ‘ t to-

.1) II ( I C , Y ) ’’ ( i  , X )  , ‘ , - ‘- ‘‘ t. , ‘ 0 ’ - ’  I t .  1 )

is a . dT i or I L cal m a)  w i t h  m u l t i 1  1 i i  — I  i i  M
1

, i t  i c r  o ’ 50 is i t , r u ,  I ’

in ‘ ‘  , s i  i c .  .. ~‘ , is a Ciomomorp l i r  sm . TV i s  ‘ I i i  • ‘. , is i ~~. 1’.’ t i ’  0 c c.  ‘ in’.

map f o r  svstt.ni ( 3 . 1 1 ) ,  w i t h  f ( s )  = 
1 ~ 2 w h i o t  i s  d i s~’, iss. ’ i ( i n  ( 1 1 ,  ‘: t , . ’. - - ” ‘

was observed by 3. Moser . More i c c i s I l y ,  in  t h e  0 t -a ’ ,’.’ ‘-as , , 1 3 . 1 1 1  w i t  I (SC

one shows the t i m a t  e v o l u t i o n  ~f l b. 5 , 5 1 1 ’s  is ‘tiv , - ri by

(x ,y )  ( r I  4 p 0(t 1) ,  + 0 ( t 2 ) ) ,  . .

w i t h

0 ( x ( 0 )  , y ( 0 ) )  “ ( ‘~~~

Si m i l a r l y  one d e f i n e s  th .  ,j - r o t a t ion  rn , ,

( 4 . 2 )  . : ( X , Y ) 1. 2 2
1 5 ’ V , X — Y ) ,  l i t

which is easily seen t o  be canonical s~~ t ii  m t u l t i ; f l ’ t  -l ~~~ ~ .‘ , ,, ‘ t ’ - :i,c~ I L l

X , V are H e r m i t i a n )  , and t h e  cor resp onding  canon ica l  ra~~.’. i ’ll , ‘ - 0  . I ! .

f a c t ,  in ( 3 . 7 ) ,  if  h ( x , y )  — ~~ t r ( y 2 
— x

2
) , t h i n, t b ’  t i m e  e v o l u t i ’ t -  of t i ’  s y s ’  or~~~ 1~ ’,

by ( 3 . 0 1  i s g iven  by

( x ( t ) , v ( t ( )  = 2 2 . + I e~~~,qe~~ - .~p
t
) J(e

2 
C, t

w i t h

“ (x(O) ,~‘(x) ) ( q , p )

This is shown in [1], Theorem 4. Moreover , as one .‘a”ilv checks

TI ’ i o D o f l , c :  ( X , Y t = (l , — Y i ,

hence

— ~ n
1
, and by (LI ), c - (x ,vt (x, -’, 1p p p p

Note that we have shown, by the time reversibility of system ( l .~~ I , t i

n (q ,p ) ~
. (q

+
,p

+
)~ These latter statements , i t , ’  shown in (1 1 ,  T t t ,  i ’ r ” m s  ~~, i .

- ‘ -

~~~~ -B-
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( 5 )  I w. ‘ i i  v . 1 .  - .v I - - - — ‘4. i -ow i ov ,-  - I i .~~it , ’ I t ,  ‘ ,-
~ ‘ ‘-nIl , ‘ i t  V a I ‘ ‘ - I I

‘I ‘ -  t I v , ’ l y

- .1) a) F , (‘s,,y) ‘ r f ( x . y ) ,  b( h
2
(x,y ( = tr f ( Ix ‘ y l  ‘ lx - y J )

H’,- I!. ’’ I ’ l l ’  n i , , ‘ ‘ . i  V f - ‘ ‘  - tc- ,r, 4, i t  is only i i .  5 5 1 ’,’ ‘ 11 ’ ’ ’ o t i ’ 7 - l i t . .’ ‘ : s s ’-  i ) .  a rid

11.11 ‘ / ‘ . ‘ , t r Ii ’ O .  - - ‘ ‘::‘ ‘  r’ciult ’; 1,1 i- ,.’ H ) .  1\ l ’ - , via l 1 ~ i t r a n s i ’  m o t i O n  I,.-riS a.,o’n

( 3 ,  t ,  i r s  ( i . h C  F .  ( 1 . ’) ) ,  i t  is o n l y  n ’ -  m ’ ’i ’ , -.ir v t o  or  d y t li , - .‘‘r~ia ’ ’rnr S or t b  f~~1l

m u l l - i l l , r , t r  , ~~~~~ t i l O l i i i ’ ti t t l E ,  t r n , i r ~ t~~u 1 ’]  ‘ ‘  ‘ , T t i ’ -  f c ’r r n o l i o i n  : 0/ 5  ~‘sLo t i’ s’ ’

a ~~~‘ f ’ -~ :.:, V) , w h ,  -h ~~~~~~~~ on . ’  to compute t b -  - “ - r . ’ ’ r , , t ’ : r  B , and li’)lVr’

tho~~ ’ j ’s . i t i  a~~. on t b -  hi ’ ;  maniI’~ l I . ~~ , and v i a  (3 .8 1  • pass to t h e  ;olutI ’.- r  on to

‘‘ii, t i ’ - i , t 0 n,~~fr ~~ ,( ~y
ci

4 -  t (  i -  rs ’ ,’ rF .In i -,- i,t i F ’ ,’ tOe o y st iz r ’ on M
1 

s i  t o  Hamilton ian

(5.2) H
1 

= H f
(X . Y )  = tr f (XY)

an d we f i r s t  ‘its’s t~ ~~‘ H
e
’s or,- in involution. Spe cifi i-all y a ssume

= tr f
1
(XY) , I I ~ = tr  f

2
(XY)

tb - n  since , tak i I ’ i  L io l i’ ’ ‘sects

= tr(f~~(XY ) ‘ [ ‘ X  V + X ~ Y ] )  0
( 2 )

where ~ (2 moans ‘a~’rrns of at h e i st  second order , w~ ’ ha ve

( 5 . 3 )  H~~
1
~ = V f~ 

( X l ,  H~~
’1 = fj  ( X V )  . X

fo r H 12 1 . By ( 2 . 6 ) ,  ( 2 . 2 ) ,  the Poisson hr,i ,, ke t , ~t ~~( l )  ( ( 2 )  
i s

by ,  ( s i t ” , , -  (A , B )  = tr  lAB)) ,  {11 W , H~~
2 1 ii = (l’~~’~ , t1 ,~

2 ) ) - (E U) ,~~~~2)
) , and th~ic o d o r 1~~iI t j n ,

in (5.3), we find

{1 W .1
(21

) = (vf ~~~f~ X) - ( f 1x , vf ~~) = tr (f~~f ,X - t r f f ~~~
’i1 = 0 •

where a” have used ff’(xY) ,XY $ = 0 , and so {ii ~~~~~~ 
~~ = o.

We have thus through o, shown the H
2

’S , H
2 

11
f 

tr f (~ IX • V (  ‘ ( X  - II ) ,

‘i re in involution , and thus by the homomorphism w ‘ .~~~ , so ire the

(tr f(xy))’s, h r  f(} (x + y] ‘ Ix — y)))’s respectively, and so

L



-. -~ ~~~~~~~~~~~~~~~~~~~~~~~~~~

tr(~’ xy), tr (~’ Ix + y l  tx — y ( )  i , ’~~s’ctively give rise to completely integrable

Hamil ton i a n  systems on I t ’ , as observed and proven in 1 1 1 .  ‘(‘his is thus the second ,

and more pleasant (‘roof of that fact .

Now by (2.61 , (5.3), Ham iltoris equations for the system of (5 .2) Fr.’

(5.4) X = f ’  ( X V )  ‘ X , V = —Yf ’ (XV)

and S i T S ’ i’ ( X V )  = 0 is a consequence of [f’(XY(, XY I = 0 , we immediateIy in tegra te

( 5 . 4 )  to obtain

f ’ (X 0V0
)t  - f ’  (X

0
Y
0
) t

( 5 . 5 )  X = e X
0
, V e

where the subscript 0 denotes evaluation at t 0. Thus by (3~ 9), the correspond i n g

equations on 0 ’  for the systems of (5.l)a are

(5.6) 6x = f’ (xy) ‘ x, óy = —yf ’ (xy)

while (3.8) implies the time evolution of (5.6) is qiven by 
-

—l 
f’ (X

0
V
0
)t

(5.7) ‘ diag(x
1~

x ,~~...~~x~ ) ( t ) U e X
0
U, etc .

The canonical map n (5.4) , impli es t(i t’ corresponding equations and time evolution for the

system with Hainiltonian 8
2 

= tr f(~ ’ IX + VI ‘ [X — VI) are

(X + Y) = - f ’ ( ~~~~( X + Y I ’ [X - V I ) ’ [ X + Y ) ,

CX - Y) = IX - Y) ‘ f’(~ I x  + y ) (X  - V I )

( 5 . 8)  w i th  (~ IX + V) [X — v~ i = 0, and

CX V) = (exp - {tf’(~ 1X
0 

÷ V
0

) ‘ [X
0 

- Y
0

] ) } j  ‘ 1X
0 

+ V )

IX — VI = 1X
0 

— V
0

1 ‘ [exp (tf’[X
0 

+ Y
0

) ‘ [X
0 

— V
0
]}I , —

where the changing of minus signs , t -
~ -t , comes about because ri iz; canonical with

multiplier —1. We now use the same procedure, (3.9), as above to transpose (5.8) to 0 ,

i.e. system (b) of (5.11 , thus concluding

(5.9) IiSx = Fx ,f ’ I  — I f ’ ,yI 1, . 2 1y  = [y, f’I —

where [/~,BJ = AB + BA , f’ = f’(~ Ix ~ y l  (x — yl). Note the simplicity of (5.8), (5.9),

-10—



w)i,,’n t (s) — 5. We could equally well study the systems gotten by ‘ t i ’tchinq ’

X ~ X , in (“ .1), (°.2), which tend to have compact behavior and t t i u t ,  ‘live rise to

.‘ i i cdt . ’ solutions for purely imaginary , see Ill , in fact for f(s) s, 1 ~ - l .

all solutions art’ .‘riodic with tine and the same nonprlmitlv .’ 1’. ’r iod .

I C ’ t . ’ that ou r  s t u d y i n g  the case , II = ti f ( X Y )  . h ti  f ( x y )  , m, k i ’ e  i t  unnt’c,’So ii \

I I  s tudy  th~’ ( Su t h er l a n d)  case where our m a n i f o l d  is

T U(n,C) ~ {(U,R~~IUU
’ 

I, P =

and our Hamiltonian is H(U,R) = H~ = tx f (R) , with Hamilton ’s equations given by (2.9),

(U ,R) = (z
1
,n 2), for after the change t • it, we would get the same formal results as

(5.4)— (5 .7), including the involution statement, via the map i, (2.8), where we

iden tify (X, XY) = (Z
1
,Z
2
) with (U,R). We note that the condition (X,Y) E “

~~
‘

namely (X ,V1 = ci is transformed into (U,U 
1
R1 = o , I.e. R - U

1
~~U = a. , -

—11 —



T

( e)  ‘ ‘ t Anu t F, ’  a Sy - , I ‘ - i t ’  ,,c - 5, i ,  a Ii s. U , , ’ i  F V . ’  ‘iv ‘ .1 ,~~~ 
f : ,, t i i i  I ,  ‘ - I

, ‘a,e may - i t  (oi i ~.j.ii ’i I F ; .  ((anti l I l i a n  ‘ ‘ F  ( C ,  is r- ysF ‘ni ‘ i i  ‘I ’  i;

(‘‘.1) il
l 

= tr 
~2 

(xy) + x)

or

(6. 2) h
2 

= ti (~ xy ’ x + x )  ,

as h 1
, h 2 d i f f e r  by co n s tan t .  if course  i n  tb .  f u l l  m a n i C - l i  I I ; ’ ’  ‘ i i  1.’: ; ‘,I,, Cin;

H a m i l t o n i a n s ,

( 6 . 3 )  — h)~ (XY)
2 

+ X L

( 6 . 4 )  11
2 

= t r ( ~~ ( X V 2X )  4 X l

~it ~ ’ far from identical. Although it is shown in III that (~‘.l ,”) I ll .1 ‘0115 )~ ‘C ’ l , -

~nt~ qr~ blc system , we’ 8hal 1 not show (1 ’ . 3,41 a t .  “10) - I  ‘ I i i  y i nt .jr,d’h,’ ‘‘i t ’s,. - i~~ I

we have not been able to do this.

We sha l l  s tudy both ( 6 . 3 , 4 ) ,  and thou  r e l a t e  thou , in , ‘as, ’ t b’ , l o o ,~ i t  ‘ ‘ 1  ‘ I i  11,-i

equa t ions  on 0 ’  have the Sant e i n i t i a l  d a t a .  S ince  tti,’ calcul: iii, ’nt ; ‘ ii . -  so ‘ I l I ” i l a L  t o

those of Sect ion  5 , we j u s t  g ive  the r e s u l t s .  For s i m p l i c ~~tv  we set XV = - I .  Th ai

w i th  the H am i l t o n j a n  of ( 6 . 3 )  we calculate , from (2, 1’)

i~~= z X , z = — X

and since I X , Y I  = 1 , (VX ) = X , weh avi ’ ~ ( XY ~ X )  . X = 
~~~~~ ~~ 

a ‘n - t oO , I n-

we arr ive  at , a g a i n  u s i n g  (X , Y J  a ,

(6.5) — ,~, 
7., — 1’. =

Le t t ing  Z — — 2a
1~~~1

, we f i n d  a~ = ~
- a 1

e
1 

— a
1”

, Ion ’ ’.’ w ’ have

a
1 

a
1
(0)

= 
a

1
(0) CXpC

1
t

(6.7)

C 1 
D

1 
(X , V)  

[i ( X Y 2:) • ~ : ‘! ] ,
~

_ _ _ _ _ _ _ _ _ _  —I



For the Hamiltonian of ((‘.4) , wi find

- I~ ’ V X , Z J  = -X

X — [
~ YX ,X1 = } (XZ + Z X )  ,

which m o t i v a t e s  us t o  di f i n .  t t s ’  der ivation ~~,

ii ) _ ,
~~~ 

. — ~~~~ , - .< .-- 
dt ~ !2 

I . I

and thu s we have from the above ,

( .8) - X ,  i~X = (Xz + Z X)

Clearly if t,’ ( O )  1 , U = — U ( ~~ ‘/X ), we have the following rule of transformations

for matrices A = A (t): if A - UIW
1

, then = U~~ AU 1
. From (6.Hl we conclude ,

using that .1 is a det ivat tun ,

( 6 . 9 )  .1( ~~ Z
2 

+ X) = 0 , 6(~ Z
2 - 6Z)  = 0

hence ly our role of transformation ,

,~ , ~2 — e
2
, e

2 
a constant ,

and thus letting Z = -‘2a 2
1
a 2

, we f i n d

1 -a
2 

= 

~ 
a
2
e
2
, i.e .

a
2 

a2 (0)

a
2

(0)  expc 2t

(6.10)

C
2 

= D
2
(X ,Y )  = [

~ (X:)
2 

+ ~ : :] at t = 0

We now consider  the case where the X ( 0 )  of both ‘lvs tems ‘it, ’ the same in t1’ , a i d
a

moreover x
1
(0) > 0. Then since b o t h  equations (6 .3,4) are the same as  seen in  ~ ‘ ,

they both must have t he  same lonq term behavior of X as r,’i,’,-ted down i n t o  l i ’ .

rn  I l l ,  Section 6, it is shown that  systems (6 . 3 , 4)  l t , i v , . the  f o l l o w i n g  lonq t , t r m

‘scattering ’ behavioru

-13-



(log x, xy) = (1 t • 6 + t ) ( r 1 ) ,  • 1 + 0 ( t 2 ) ) ,  t •

where log x — (log x
1
,..., log x ) ,  xy = (x

1
y
1 

x y ) . By arguments in that same

section, it ’s clear that the ’;1 , ’ , ‘trum of C
1

, or alternately C
2
, precisely carry

the data , and hence we must have

l)
1
(X,V ) D

2
(X ,Y )

where denotes spectral equivalence . By (6.7 ,10), (3.8), this implies

( 6 . 1 1 )  D
1

(x ,y )

Moreover it follows from (6.5,9) that 0
1

(X ,Y), 0
2

(X ,V ) are isospectral matrices of

the differential equations (6.3,4), and so in particular 0
1
(x,y), D

2
(x,y) are for

the (6.1 ,2) flow, and thus we a r r ive  a t

(6.12) 0
1
(0 ),ybo) ) lint D

1
(it(t ),y(t)) D

2
(x(t),y(t))

wh i r’ti s’iehds the scattering behavior of system (6.1 ,2) as discussed in Corol la r ies 11.2, 11. 3 ,

of (11, -which e’iseu t i i u l l y  maintains that the system scatters as if it is completely

d.’c,,u1 l. ’,t , and Jus t , - .‘itot u , iin, ~d to maintain a fixed order on the line.

I w i s h  t~ ’ tha nk 1 . M,,~ t’r, who suggested this research and encouraged it, and

C. ;‘onl ,’\’, at t t i ’ ’ s . ’ s,’mlniar at the University of Wisconsin at Madison , these resul ts

wet , ’  t i i  St C i , -i -i, ’,it,’d,

— 1 4 —  
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